Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

И,о проректора по образованию

===1О.Й. Ришко

«<u>15</u>» <u>августа</u> 2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Цифровое производство, прикладная электроника и программирование

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: базовый

Возраст обучающихся 12 - 18 лет

Срок реализации: 36 академических часа

Составитель (разработчик): Инженер РеИнж НИТУ МИСИС Поселеннов А.Д.

1 Пояснительная записка

1.1 Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее — НИТУ МИСИС, Университет МИСИС, Университет) «Технологии и материалы цифрового производства» разработана на основе и в соответствии с нормативно-правовыми документами:

- Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации» (с изм. на 17.02.2023 г.). (далее -273-ФЗ).
- Концепция развития дополнительного образования детей до 2030 года (с изм. на 15.05.2023 г.) (утверждена распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р).
- Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (утвержден приказом Министерства просвещения Российской Федерации от 27 июля 2022 г. № 629) (далее Приказ № 629).
- Целевая модель развития региональных систем дополнительного образования детей (утверждена приказом Министерства просвещения Российской Федерации от 3 сентября 2019 г. № 467) (с изм. на 21.04.2023).
- Приказ Министерства Просвещения Российской Федерации от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. № 196».
- Приказ Министерства Просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- Постановление Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи».
- Постановление Главного государственного санитарного врача Российской Федерации от 28 января 2021 г. № 2 СанПиН 1.2.3685-21 «Санитарные нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (раздел VI «Гигиенические нормативы по устройству, содержанию и режиму работы организаций воспитания и обучения отдыха и оздоровления детей и молодежи»).
- Письмо Министерства образования и науки РФ от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)».
- Приказ Департамента образования города Москвы от 17.12.2014 г. № 922 «О мерах по развитию дополнительного образования детей» (с изм. на 24.10.2022).

- Приказ Департамента образования и науки города Москвы от 3.04.2023 г. № 271 «О внесении изменений в приказ Департамента образования и науки города Москвы от 17 декабря 2014 года № 922».
- Методические рекомендации по реализации дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий: приложение к письму Министерства просвещения Российской Федерации от 31 января 2022 г. №ДГ-245/06.
 - Локальные нормативные акты по образовательной деятельности Университета.

Направленность программы – техническая.

Уровень освоения – базовый.

Цель программы — профориентация обучающихся и развитие мотивации к техническому творчеству, развитие познавательной активности детей через обучение основам дизайна и технологий персонального цифрового производства, а также содействие наблюдательности в познании мира как важного качества современного ученого и инженера.

Актуальность программы

В современном мире, где технологии развиваются стремительными темпами, прикладная электроника и программирование становятся ключевыми направлениями профессиональной подготовки специалистов. Эти области знаний лежат в основе большинства инновационных разработок, от бытовых устройств до сложных промышленных систем. Изучение программ в сфере прикладной электроники и программирования открывает широкие возможности для профессиональной реализации и позволяет двигаться в авангарде технологического прогресса. Цифровизация экономики и внедрение автоматизированных систем управления во всех отраслях промышленности создают постоянный спрос на квалифицированных специалистов в области электроники и программирования. Современные предприятия нуждаются в профессионалах, способных разрабатывать и внедрять новые технологии, оптимизировать производственные процессы и обеспечивать надежную работу электронного оборудования. Это делает обучение по данным направлениям особенно актуальным. Междисциплинарный характер программы обучения в области прикладной электроники и программирования позволяет выпускникам успешно работать на стыке различных областей знаний. Специалисты, владеющие знаниями в области электроники, так и программном обеспечении, могут создавать комплексные решения, которые отвечают современным требованиям рынка. Это открывает перед ними широкие перспективы для карьерного роста и профессионального развития. Наконец, научно-технический потенциал страны во многом зависит от качества подготовки специалистов в области прикладной электроники и программирования. Развитие этих направлений способствует укреплению технологического суверенитета государства, созданию новых рабочих мест и повышению конкурентоспособности отечественной продукции на мировом рынке.

Педагогическая целесообразность

Концептуальная идея предлагаемого курса состоит в формировании у обучающихся навыков инженерно-технического творчества и исследовательских навыков. Обучающиеся в процессе наблюдения, исследования, экспериментирования, приобретут новые знания и навыки, которые помогут сформировать свой собственный вектор в выборе своей будущей профессии.

1.2 Цель и задачи

Цель – ознакомить обучающихся с современными цифровыми производственными технологиями и сформировать потенциал для зарождения интереса к прикладной электронике и программированию.

Задачи

Обучающие:

- научить определять задачи и функционал изделий;
- научить пользоваться паяльным оборудованием;
- научить самостоятельно решать технические задачи в процессе конструирования;
- научить подбирать электронные компонент под задачу;
- научить базовым принципам функционального программирования;
- научить работе с цифровым производственным оборудованием;
- научить основам программирования микроконтроллеров.

Развивающие:

- развить логическое мышление, пространственное воображение, творческие способности;
 - развивать образное, техническое мышление и умение выразить свой замысел в проекте;
- развить познавательные, интеллектуальные и творческие способности обучающихся, в процессе создания моделей и проектов, умение работать в небольших группах, этику общения;
 - развить умение довести решение задачи до работающей модели;
- развить смекалку, находчивость, изобретательность и устойчивый интерес к поисковой творческой деятельности;
- развить умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- развить умение работать над проектом в команде, эффективно распределять обязанности.

Воспитательные:

- воспитать чувство товарищества, чувство личной ответственности;
- воспитать нравственные качества по отношению к окружающим (доброжелательность, чувство товарищества и ответственность);
- воспитать уважение к интеллектуальной собственности, культуру правомочных заимствований и неприятие плагиата.

Отличительной особенностью программы является фокус на прикладные задачи, связанные с электроникой и программированием.

Возраст: 12 - 18 лет.

Сроки реализации: 1 год. Общее количество учебных часов, запланированных на весь период обучения - 36.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия, мастер-классы. Формы организации деятельности: групповые и индивидуально-групповые. Наполняемость группы: до 25 человек.

Время обучения – 2-6 часов в неделю. При сохранении общего количества часов программы могут быть реализованы в более короткий срок за счет занятости школьников в каникулярный период и выходные и праздничные дни. Предусмотрен перерыв продолжительностью 15 минут в конце каждого учебного занятия.

Ожидаемые результаты

В результате освоения программы обучающиеся будут знать:

- принципы работы цифрового производственного оборудования (3D принтер, лазерногравировальный станок, фрезерный станок);
 - особенности изготовления печатных плат;
 - принципы работы с готовыми 3D моделями;
 - основы работы с электронными компонентами;
 - принцип работы широтно-импульсной модуляции (ШИМ);
 - основы программирования: от переменных до функций.

будут уметь:

- проектировать простейшие печатные платы;
- подготавливать файлы для изготовления печатных плат с помощью фрезерного станка:
- подготавливать файлы для изготовления деталей с помощью лазерногравировального станка;
 - подготавливать файлы для изготовления деталей с помощью 3D принтера;
 - паять электронные компоненты;
 - пользоваться лабораторным блоком питания и мультиметром;
 - программировать электронные устройства на базе Arduino;
 - планировать и распределять работу над общим проектом между членами команды;
 - справляться с индивидуальными заданиями, составляющими часть общей задачи.

2 Содержание программы

2.1 Учебно-тематический план

Программа состоит из четырех разделов, каждый из которых включает в себя лекции, практические занятия и самостоятельную работу.

Таблица 1 - Учебно-методический план

№	Раздел / Тема	Аудиторные учебные занятия	Вне-	Формы
п/п			ауд.	аттестации
11/11			работа	(контроля)

		Всего ауд. часов	Ле кц ии	Практические занятия	Сам. работа	
1	Блок 1. Введение в программирование	10	3	7		Опрос, практическая работа
1.1	Основы программирования. Часть 1	4	1	2		
1.2	Основы программирования. Часть 2	3	1	2		
1.3	Основы программирования. Часть 3	4	1	3		
2	Блок 2. Введение в прикладную электронику	10	3	7		Опрос, практическая работа
2.1	Основы электроники	2	2			-
2.2	Работа с паяльным оборудованием, мультиметром и лабораторным блоком питания	2		2		
2.3	Работа с Arduino Uno	3	1	2		
2.4	ESP32 и беспроводная связь	3		3		
3	Блок 3. Введение в цифровое производство	10	4	6		Опрос, практическая работа
3.1	Основы работы с 3D принтером	2	1	1		
3.2	Основы работы с лазерногравировальным станком	2	1	1		
3.3	Проектирование и изготовление печатных плат	3	1	2		
3.4	Проектирование и изготовление держателей на вал мотора	3	1	2		
4	Блок 4. Проектная деятельность	6		6	3	Презентация проекта
4.1	Колесный робот	6		6	3	
	Итоговая аттестация					Итоговая аттестация проводится на основании совокупности выполненных

					промежуточных практических работ
Всего: ак.ч	36	10	23	3	

2.2 Рабочая программа

Блок 1. Введение в программирование

1.1 Основы программирования. Часть 1.

Лекция: переменные, типы данных, массивы, условный оператор if.

Практическое занятие: программирование простых анимаций на p5js с использований переменных и условных операторов.

1.2 Основы программирования. Часть 2.

Лекция: Циклы for, while, do-while.

Практическое занятие: программирование паттернов из геометрических примитивов на p5js.

1.3 Основы программирования. Часть 3.

Лекция: Функции.

Практическое занятие: программирование интерактивных приложений и обработка событий.

Блок 2. Введение в прикладную электронику

2.1 Основы электроники

Лекция: Электрические цепи постоянного тока.

2.2 Работа с паяльным оборудованием, мультиметром и лабораторным блоком питания *Практическое занятие:* Подключение устройств к лабораторному источнику питания. Измерение напряжения, сопротивления и тока с помощью мультиметра. Пайка светодиодов.

2.3 Работа с Arduino Uno

Лекция: Программируемая электроника на базе Arduino.

Практическое занятие: Подключение Arduino Uno. Использование сенсоров и актуатором.

2.4 ESP32 и беспроводная связь

Практическое занятие: Микроконтроллер ESP32: беспроводная связь с использованием ИКприемника, Bluetooth и Wi-Fi.

Блок 3. Введение в цифровое производство

3.1. Основы работы с 3D принтером

Лекция: Технология FFF и особенности трехмерного проектирования.

Практическое занятие: Подготовка файлов к печати на FFF 3D принтере Flashforge Adventurer 5M.

3.2 Основы работы с лазерно-гравировальным станком

Лекция: Технология лазерной резки.

Практическое занятие: Построение векторов в плоскости и экспорт для последующей обработки на станке GCC Laser Pro.

3.3 Проектирование и изготовление печатных плат

Лекция: Принципы проектирования печатных плат.

Практическое занятие: Проектирование печатной платы со светодиодом и фоторезистором в программе EasyEDA. Подготовка файлов для фрезеровки. Выбор инструмента и технологических параметров обработки.

3.4 Проектирование и изготовление держателей на вал мотора

Лекция: Особенности обработки различных материалов на фрезерном станке.

Практическое занятие: Фрезеровка держателей на вал мотора из алюминиевого сплава.

Блок 4. Проектная работа

4.1 Колесный робот

Практическое занятие: Программирование контроллера для робота на базе ESP32 с беспроводным управлением (Wi-Fi).

Самостоятельная работа: Сборка колесного робота.

3 Формы аттестации и оценочные материалы

3.1 Формы контроля

Реализация программы «Цифровое производство, прикладная электроника и программирование» базового уровня предусматривает текущий контроль, промежуточную и итоговую аттестацию обучающихся.

Текущий контроль проводится проверка знаний в форме короткого опроса, позволяющего выявить усвоение материала обучающимися. Вопросы, которые возникают у обучающихся в процессе обучения, выносятся на общее обсуждение также в диалоговой форме разбора материала.

Промежуточная аттестация проводится в форме защиты работы или проекта, участия в конференциях, выставках, фестивалях.

Итоговая аттестация проводится в форме защиты учебно-исследовательской или творческой работы и проекта.

Основным механизмом выявления результатов воспитания является педагогическое наблюдение.

Публичная презентация образовательных результатов программы осуществляется в форме презентации проекта или выставки.

3.2 Средства контроля

Контроль освоения обучающимися программы осуществляется путем оценивания параметров, описанных в Taблице 2.

Таблица 2 - Критерии оценивания освоения программы обучающимися

Критерии	Уровни определения результатов				
оценки	Минимальный уровень	Общий уровень	Продвинутый уровень		
Усвоение учебного материала	Обучающийся может пройти короткий опрос каждого раздела программы	Обучающийся может пройти короткий опрос каждого раздела программы и ответить на дополнительные вопросы	Обучающийся может пройти короткий опрос каждого раздела программы, ответить на дополнительные вопросы, вносит предложения вопросов для обсуждения		
Рабочие результаты	Обучающийся показывает знание материала, учебный проект не выполнен.	Выполнен учебный проект	Выполнено два или больше проектов в рамках программы.		

3.3 Итоговая аттестация

Итоговая аттестация проводится на основании совокупности проведенных опросов и выполненного проекта.

4 Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация), практические (дети решают инженерные задачи), аналитические.

С целью стимулирования творческой активности учащихся будут использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- игровые методики;
- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- поисковый эксперимент;
- опытная работа;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала используются:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
- дидактические пособия (карточки с заданиями, рабочие тетради с практическими заданиями, раздаточный материал);

- информационные материалы и технологические карты (инструкции, памятки).

Программа может быть реализована с применением электронного обучения и дистанционных образовательных технологий с использованием систем дистанционного обучения.

5 Организационно-педагогические ресурсы

5.1 Специализированные лаборатории и классы, основные установки и стенды

Занятия проводятся в специализированных аудиториях со всем необходимым для реализации проектов оборудованием:

- компьютерный класс (К-112);
- лаборатория 3D печати (K-018).

5.2 Оборудование и программное обеспечение

Программа реализуется с использованием специализированного программного обеспечения для трехмерного проектирования:

- операционная система Windows 10;
- Rhino 3D;
- Orca Slicer:
- Arduino IDE.

5.3 Аппаратное обеспечение

Программа реализуется на оборудовании ЦТПО (Центр технологической поддержки образования) «Лаборатории цифрового производства Фаблаб» (СКБ «РеИнж» НИТУ «МИСИС»):

- станок лазерной резки и гравировки GCC Laser Pro;
- станок лазерной резки и гравировки Trotec;
- FFF 3D принтеры Flashforge Adventurer M5;
- ручной инструмент и электроинструмент.

5.4 Материалы и инструменты

Материалы и инструменты, используемые в ходе проведения практических занятий и самостоятельной работы:

- филамент PLA для 3D печати FFF (12 катушек по 750 г);
- филамент PETG для 3D печати FFF (20 катушек по 750 г);
- филамент TPU для 3D печати FFF (5 катушек по 750 г);
- фанера 3мм для лазерной резки (5 листоа 1500x1500мм);
- фанера 6мм для лазерной резки (3 листа 1500х1500мм);
- оргстекло 3 мм для лазерной резки (3 листа 2000х1800мм);
- контроллер ESP-WROOM на базе ESP32 (50 шт.);
- драйвер моторов ТВ6612 (50 шт.);
- аккумуляторы литиевые 18650 (75 шт.);

- моторы постоянного тока 12 В (50 шт);
- контроллер Arduino Uno (25 шт.);
- припой бессвинцовый 100 г 1 мм (10 шт.);
- флюс ЛТИ-120 22 мл (10 шт.);
- ПВX трубы 32x2.4x3000 (10 шт.);
- трубы алюминиевые круглые 16x1 2м (15 шт.);
- трубы алюминиевые квадратные 1.5x20x20 2 м (15шт.)
- колеса
- плита Д16Т 16х250×200 (5 шт.);
- шариковые подшипники 623-ZZ (150 шт.);
- шариковые подшипники 625-ZZ (150 шт.);
- шариковые подшипники 626-ZZ (150 шт.);
- шариковые подшипники 608-ZZ (150 шт.);
- шариковые подшипники 6001-ZZ (150 шт.).

5.5 Кадровое обеспечение программы

Программа реализуется квалифицированными научно-педагогическими кадрами системы высшего профессионального образования, имеющим профессиональное образование в области, соответствующей профилю программы, и постоянно повышающим уровень профессионального мастерства. Для обеспечения образовательного процесса необходимо привлечение следующих специалистов:

- преподаватель;
- ассистент преподавателя;
- инструктор.

6 Интернет-ресурсы

Список интернет-ресурсов

1. Rutube-канал «Цифровая фабрика». - URL: https://rutube.ru/u/digitalfab/ (дата обращения 05.02.2025).