Фамилия, имя, отчество	Сундеев Роман Вячеславович
Должность, ученая степень, ученое звание	Профессор, д.фм.н., доцент
Корпоративная электронная почта	sundeev.rv@misis.ru
Область научных интересов	большие (интенсивные) пластические деформации, аморфные сплавы, фазовые превращения, кручение под высоким давлением, рентгеноструктурный анализ, синхротронный излучение, наноматериалы.
Трудовая деятельность – год, организация, должность	2008-наст. вр ФГУП «ЦНИИ Чермет им. И.П. Бардина», начальник лаборатории. 2009-2013 гг. — МГУПИ, заведующий лабораторией наноматериалов 2013-2016 гг. — МГУПИ, старший преподаватель кафедры нанотехнологий 2016-наст. вр. — РТУ МИРЭА, профессор кафедры наноэлектроники 2019- наст. вр. — НИТУ МИСИС, профессор
Образование	Московский институт стали и сплавов, инженер-физик по специальности «Физика металлов».
Основные результаты деятельности (перечисление достигнутых результатов)	Используя комплекс эффективных методов исследования структуры, проведено систематическое изучение и комплексный анализ структурных механизмов фазовых переходов «кристалл ⇔ аморфное состояние» в кристаллических и аморфных металлических сплавах и слоистых композитах в ходе больших пластических деформаций при комнатных и криогенных температурах. Полученные результаты вносят существенный вклад в понимание природы реализации деформационно-индуцированных структурно-фазовых переходов в металлических сплавах и композитов при больших пластических деформациях. С практической точки зрения, представленные результаты, открывают перспективы для разработки новых материалов, объединяющих аморфную и нанокристаллическую структуру, и обладающих высокими функциональными характеристиками с высокой температурно-временной стабильностью.
Значимые исследовательские/преподав ательские проекты, гранты (тема, заказчик, год, полученные результаты)	1. Победитель в конкурсе на соискание премии Правительства Москвы молодым ученым за 2020 год в номинации «Технические и инженерные науки» за работу «Значительный вклад в разработку физических основ создания новых функциональных аморфно-нанокристаллических и нанокристаллических материалов в ходе экстремальных воздействий». 2. Победители конкурса 2015-2017 года на получение стипендии Президента РФ молодым ученым и аспирантам СП-732.2015.1 за работу на тему «Разработка принципов формирования функциональных аморфно-нанокристаллических и нанокристаллических материалов в ходе интенсивной пластической деформации в условиях криогенной температуры». 3. Первое место на конкурсе «Молодые учёные - 2017» выставки Металл-Экспо'2017 за работу «Создание функциональных

- аморфно-нанокристаллических и нанокристаллических металлических сплавов методом больших пластических деформаций».
- 4. Грант РНФ № 25-22-00132 Физические закономерности формирования гибридных аморфно-нанокристаллических материалов в ходе различных экстремальных воздействий (Руководитель 2025-2026 гг.).
- 5. Грант Президента РФ МК-43.2020.2 Изучение физических основ влияния больших пластических деформаций при различных температурах на структуру и физико-механические свойства ферромагнитных аморфных сплавов на основе Со, Ni и Fe (Руководитель 2020-2021гг.).
- 6. Грант РФФИ № 20-32-70007 (Стабильность) Структурные механизмы деформационно-индуцированной аморфизации и нанокристаллизации и физико-механические свойства в металлических сплавах под воздействием больших пластических деформаций при криогенной температуре (Руководитель 2020-2021 гг.).
- 7. Грант РФФИ № 20-02-00291_а Особенности структуры и физико-механические свойства слоистых нанокомпозитов, созданных путем консолидации в камере Бриджмена (Руководитель 2020-2022).
- 8. Грант РНФ № 18-72-00026 Изучение физических закономерностей эволюции структуры и магнитных свойств в аморфных ферромагнитных сплавах на основе железа в ходе больших пластических деформаций при различных температурах (Руководитель 2018-2020гг.).
- 9. Грант РФФИ № 16-32-60034 мол_а_дк Изучение структурных механизмов атомного разупорядочения в ходе аморфизации кристаллических сплавов при больших пластических деформациях (Руководитель 2016-2018гг.).
- 10. Грант РФФИ № 15-38-70007 мол а мос Разработка физических принципов новых создания аморфно-нанокристаллических композитных слоистых материалов на основе никелида высокими титана физико-механическими свойствами методами закалки из расплава кручением под высоким давлением (Руководитель 2016-2017гг.).

Значимые публикации (список, не более 10)

- 1. Rogachev, S.O. Improving the Strength and Ductility Balance of Al–Ca–(Fe, La, Ce) Ternary Eutectic Alloys by High-Pressure Torsion Processing and Subsequent Annealing / S.O. Rogachev, E.A. Naumova, R.V. Sundeev, N.Yu. Tabachkova, M.Yu. Zadorozhny // Metals and Materials International. 2025.
- 2. Sundeev, R. Structural Aspects of the Formation of Multilayer Composites from Dissimilar Materials upon High-Pressure Torsion / R. Sundeev, A. Shalimova, S. Rogachev, O. Chernogorova, A. Glezer, A. Ovcharov, I. Karateev, N.Tabachkova // Materials. 2023. V. 16(10). P. 3849.
- 3. Глезер, А.М. Физика больших пластических деформаций / А.М. Глезер, Р.В. Сундеев, А.В. Шалимова, Л.С. Метлов // УФН. 2023. Т. 193. № 1. С. 33-62.
- 4. Sundeev, R.V. Role of structural changes in the composite consolidation from dissimilar layers upon high-pressure torsion / R.V. Sundeev, A.V. Shalimova, S.O. Rogachev, O.P. Chernogorova, A.M.

	Glezer, A.V. Ovcharov, I.A. Karateev // Materials Letters. – 2023. – V.
	331. – P. 133513.
	5. Sundeev, R.V. Comparative analysis of the crystallization
	mechanisms and kinetics in the Ti ₅₀ Ni ₂₅ Cu ₂₅ alloy amorphized by melt
	quenching or severe plastic deformation / R.V. Sundeev, A.V.
	Shalimova, A.V. Krivoruchko, A.M. Glezer, A.A. Veligzhanin,
	V.A.Khonik // Intermetallics. – 2022. – V. 141. – P. 107372.
	6. Сундеев, Р.В. Применение методов EXAFS- и
	EELFS-спектроскопии для анализа атомной структуры объемных
	и поверхностных областей сплава $Ti_{50}Ni_{25}Cu_{25}$ после
	экстремальных воздействий методами мегапластических
	деформаций и закалки из расплава / Р.В. Сундеев, А.М. Глезер,
	А.В. Шалимова, А.В. Криворучко, А.А. Велигжанин, В.О.
	Вахрушев // Известия РАН. Серия физическая. – 2021. – Т. 85. – №
	7. – C. 953-961.
	7. Sundeev, R.V. Effect of high-pressure torsion on the structure and
	properties of the natural layered amorphous-crystalline Ti ₂ NiCu
	composite / R.V. Sundeev, A.V. Shalimova, N.N. Sitnikov, O.P.
	Chernogorova, A.M. Glezer, M.Yu. Presnyakov, I.A. Karateev, E.A.
	Pechina, A.V. Shelyakov // Journal of Alloys and Compounds. – 2020.
	– V. 845. – P. 156273.
	8. Sundeev, R.V. The effect of changes in the local atomic structure on
	the magnetic properties of amorphous iron-based alloys deformed by
	high-pressure torsion at different temperatures / R.V. Sundeev, A.V.
	Shalimova, A.A. Veligzhanin, O.V. Chernysheva, A.M. Glezer, N.S.
	Perov, Yu.A. Alekhina, N.V. Umnova // Journal of Alloys and
	Compounds. – 2019. – V. 797. – P. 622-629.
	9. Sundeev, R.V. Difference between local atomic structures of the
	amorphous Ti ₂ NiCu alloy prepared by melt quenching and severe
	plastic deformation / R.V. Sundeev, A.V. Shalimova, A.A. Veligzhanin,
	A.M. Glezer, Y.V. Zubavichus // Materials Letters. – 2018. – V. 214. –
	P. 115-118.
Индекс Хирша по Scopus	16
Количество статей по Scopus	86
SPIN РИНЦ	5386-3376
ORCID	0000-0002-9094-3699
Scopus AuthorID	706215
Значимые патенты (список,	Способ обработки технически чистого титана большой
не более 10)	пластической деформацией [Текст]: пат. 2709416 Рос. Федерация:
	МПК С 22 F 1/18, В 21 J 5/00, В 82 В 3/00 / Глезер А.М.,
	Шурыгина Н.А., Ракоч А.Г., Черетаева А.О., Щетинин И.В.,
	Томчук А.А., Сундеев Р.В.; ФГАОУ ВО "Национальный
	исследовательский технологический университет "МИСиС" - № 2010132477/02: 2000 14 10 10 : 2010132477/02: 2000 15 10 10 10 10 10 10 10 10 10 10 10 10 10
Пиоточеновиче	2019132477/02; заявл. 14.10.19 ; опубл. 17.12.19, Бюл. № 35
Преподавание	Методы получения наночастиц и наноматериалов
	Методы исследования материалов