Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

И.о. проректора по образованию

Ю.И. Ришко

«<u>18</u>» <u>Октобре</u> 2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Применение цифровых инженерных методов для проектирования и изготовления изделий

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: ознакомительный Возраст обучающихся 12 - 18 лет Срок реализации: 36 академических часов

Составитель (разработчик):
Торбик М.А, выпускник института технологий и студент института Экономики и управления Университета науки и технологий МИСИС Халимова А. Н., выпускник института технологий и студент института Компьютерных наук Университета науки и технологий МИСИС

1. Пояснительная записка

1.1. Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее – НИТУ МИСИС, Университет МИСИС, Университет) «От идеи до изделия» разработана на основе и в соответствии с нормативно-правовыми документами:

- Федеральный Закон РФ от 29.12.2012 г. № 273 «Об образовании в Российской Федерации» (в редакции Федерального закона от 31.07.2020 № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания обучающихся») (далее 273-ФЗ);
- Приказ Министерства Просвещения Российской Федерации от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утверждённый приказом Министерства Просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- Приказ Министерства Просвещения Российской Федерации от 09.11.2018
 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Постановление Главного государственного санитарного врача
 Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных
 правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к
 организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- Письмо Министерства образования и науки РФ от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Приказ Департамента образования города Москвы № 922 от 17.12.2014 г. «О мерах по развитию дополнительного образования детей» (в редакции от 07.08.2015 г. № 1308, от 08.09.2015 г. № 2074, от 30.08.2016 г. № 1035, от 31.01.2017 г. № 30, от 21.12.2018г. № 482);

Локальные нормативные акты по образовательной деятельности
 Университета.

Направленность программы: техническая.

Уровень освоения: ознакомительный.

В рамках программы предполагается ознакомление с реалиями работы современного специалиста в области инжиниринга. Учащимся будет предложено ознакомиться с основами механики и проектирования и устройством оборудования (3Д-принтер, ЧПУ станок, лазерный станок).

Новизна заключается в практической направленности и постепенном погружении в инженерный процесс. Занятия структурированы таким образом, чтобы обучающиеся проходили полный цикл инженерной деятельности: от постановки задачи и макетирования до цифровой разработки и последующего изготовления изделия на современном оборудовании. Участники познакомятся с современными подходами, которые применяются в студенческих конструкторских бюро и инженерных компаниях, и на практике увидят, как соединяются знания из разных областей: механики, информатики, материаловедения и проектирования.

Актуальность программы

Программа охватывает ключевые направления современного инжиниринга — макетирование, цифровое проектирование, прототипирование и производство. В условиях стремительного развития технологий важно формировать у школьников не только теоретическую базу, но и навыки применения знаний для решения практических задач. Освоив принципы работы с конструкциями и современным оборудованием, учащиеся смогут осознаннее выбирать будущее направление обучения, а также будут подготовлены к участию в проектной и исследовательской деятельности в вузах и инженерных центрах.

Педагогическая целесообразность

Концептуальная идея курса состоит в том, чтобы сформировать у школьников понимание инженерного подхода и навыки командной работы. Через практические задания они учатся доводить идею до реализации, комбинируя знания из разных областей. Такой опыт формирует гибкость мышления, креативность и уверенность в собственных силах. Знания и навыки, полученные в рамках программы, будут полезны школьникам не только для поступления в технические вузы, но и в любой сфере, где важны системное мышление и умение решать практические задачи.

1.2. Цель и задачи

Цель: сформировать у обучающихся теоретические и практические навыки в современного макетирования И проектирования, инженерного области производства, а также развить инженерное мышление и умение работать в команде.

Задачи:

Обучающие:

- познакомить школьников с основами инженерного проектирования, макетирования и прототипирования;
- инструментов работы современных принципами - ознакомить C оборудования: САД-систем, 3Д-принтеров, лазерных и ЧПУ-станков;
- дать представление о различных материалах и способах их применения в инженерной практике;

развивающие:

- мышление, системное пространственное И учащихся – развить у креативность и практическую смекалку;
- математика, школьных дисциплин (физика, взаимосвязь показать информатика) с инженерными задачами;
- сформировать навыки командной работы и доведения идеи до готового результата;
- инженерных направлений ДЛЯ выбору учащихся к мотивировать дальнейшего обучения.

Отличительной особенностью программы является то, что она реализуется в короткие сроки за счет сокращения теоретического материала и акцента на практику. Такой подход позволяет поддерживать высокую мотивацию школьников и обеспечивает результативность занятий.

Возраст: 12 - 18 лет

Сроки реализации: 36 академических часов.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия, мастер-классы. Формы организации деятельности: групповые и индивидуально-групповые. Наполняемость группы: 15-25 человек.

Режим занятий: 1-2 занятие в неделю по 3 академических часа. Также планируется проведение тренинга в течение 3-х дней по 3 академических часа (вовремя школьных каникул).

Ожидаемые результаты

В результате освоения программы «Применение цифровых инженерных методов для проектирования и изготовления изделий» обучающиеся

будут знать:

- основы инженерного проектирования и прототипирования;
- принципы работы САD-систем, 3D-принтеров, лазерных и ЧПУ-станков;
- базовые сведения о материалах и способах их применения;
- роль макетирования и моделирования в инженерной деятельности;
- этапы инженерного цикла: от постановки задачи до создания готового изделия.

будут уметь:

- формулировать инженерную задачу и предлагать пути её решения;
- создавать простые макеты из подручных материалов (картон и др.);
- разрабатывать базовые 3D-модели в CAD-средах;
- работать в команде над проектом, распределять роли и презентовать результат;
- доводить идею до готового прототипа, используя доступные производственные технологии.

Определение результативности и формы подведения итогов программы

В образовательном процессе будут использованы следующие методы определения результативности и подведения итогов программы:

Текущий контроль. Будет проводиться с целью непрерывного отслеживания уровня усвоения материала и стимулирования обучающихся. Для реализации текущего контроля в процессе объяснения теоретического материала педагог обращается к обучающимся с вопросами и короткими заданиями.

Тематический контроль. Будет проводиться в виде практических заданий по итогам каждой темы с целью систематизировать, обобщить и закрепить материал.

Итоговый контроль. Основывается на совокупности выполненных проектов и демонстрации готовых изделий в ходе финальной презентации.

В процессе обучения будут применяться различные методы контроля, в том числе с использованием современных технологий.

2. Содержание программы «Применение цифровых инженерных методов для проектирования и изготовления изделий»

2.1. Учебно-тематический план

№ 1/11	,	Аудиторные учебные				CTB
	Раздел / Тема	Всего ауд. часов	Лекции	ятия Практические занятия	Формы аттестации (контроля)	Трудоемкость
	Вводное. Инженерное мышление.	2	2			2
	Необходимость макетов.	2		2		2
	Макетирование.	2	1	1		2
3	Механизмы: принципы работы.	2				2
4	Знакомство с CAD-программой. Простые операции.	2		2		
5	САD-программа. Работа со сборками.	2		2		2
	САD-программа. Самостоятельная работа для закреплений навыков.	2		2		2
7	Промышленный дизайн. Эскизирование.	2	1	1		2
	2D	2	1	1		2
8	3D-печать. ЧПУ станок и лазерный станок.	2	2			2
9	Ознакомление с различными	2	2			2
11	материалами. Основы литья. Подготовка	2		2		2
12	формы. Основы литья. Создание модели	2		2		2
	из силикона.	12		12	Проект	12
13.1	Тренинг. 3Д-моделирование ночного			4		4
13.2	светильника. Технология производства			4	4	4
13.2	спроектированной конотрукции			4		
13.3	Сборка и презентация работ. Итого	36		9 27		3

2.2. Рабочая программа

1. Вводное. Инженерное мышление. Необходимость макетов. (2 ч.)

Лекция (2ч.) Основные понятия инженерного мышления. Роль макетов и моделей в проектной деятельности. Деятельность студенческого конструкторского бюро (СКБ) на примерах реальных проектов.

2. Макетирование. (2 ч.)

Практическое занятие (2ч.) Конструирование макетов из картона. Варианты для выполнения: «Картонный автомобильчик», «Башня инженера», «Катапульта», «Колесо обозрения».

3. Механизмы: принципы работы. (2 ч.)

Лекция (1ч.) Обзор простых механизмов: рычаги, колёса, передачи, оси.

Практическое занятие (1ч.) Эксперименты с готовыми моделями. Миниигра «найди механизм вокруг себя».

4. Знакомство с САД-программой. Простые операции. (2 ч.)

Практическое занятие (2ч.) Интерфейс CAD-программы (Fusion 360 или Компас 3D). Основные операции моделирования простых объектов.

5. САД-программа. Работа со сборками. (2 ч.)

Практическое занятие (2ч.) Создание сборок. Настройка соединений и связей между деталями.

6. САД-программа. Самостоятельная работа для закреплений навыков. (2 u.)

Практическое занятие (2ч.) Самостоятельное моделирование механизма.

7. Промышленный дизайн. Эскизирование. (2 ч.)

Лекция (1ч.) Основы промышленного дизайна. Техника эскизирования.

Практическое занятие (1ч.) Выполнение быстрых набросков деталей и планирования навыков И мышления визуального Развитие механизмов. конструкции.

8. 3D-печать. (2 ч.)

Лекция (1ч.) Принципы работы 3D-принтера. Подготовка моделей к печати. Правила безопасного использования оборудования.

качества Анализ печати. Технология (14.)занятие Практическое полученных деталей.

9. ЧПУ станок и лазерный станок. (2 ч.)

Лекция (2ч.) Основы работы ЧПУ и лазерных станков. Технологии цифрового производства деталей.

10. Ознакомление с различными материалами. (2 ч.)

механике используемых материалов, Свойства (24.)Лекция промышленном дизайне: жёсткость, пластичность, прочность, вес. Применение в инженерных проектах.

11. Основы литья. Подготовка формы. (2 ч.)

Практическое занятие (2ч.) Создание формы в CAD-программе.

12. Основы литья. Создание модели из силикона. (2 ч.)

Практическое занятие (2ч.) Технология литья из силикона. Заливка и получение готовой детали.

13. Тренинг. (12 ч.)

13.1 3D-моделирование ночного светильника.

Практическое занятие (4ч.) Проектирование подставки и декоративного изображения для акрила.

13.2 Технология производства спроектированной конструкции.

Практическое занятие (4ч.) Последовательность операций по изготовлению изделия. Использование различных технологий цифрового производства.

13.3 Сборка и презентация работ.

Практическое занятие (4ч.) Сборка конструкций. Подготовка презентации проектов. Представление результатов и обсуждение.

3. Формы аттестации и оценочные материалы

В процессе обучения будут применяться различные методы текущего контроля.

Текущий контроль. Будет проводиться с целью непрерывного отслеживания уровня усвоения материала и стимулирования обучающихся. Для реализации текущего контроля в процессе объяснения теоретического материала педагог обращается к обучающимся с вопросами и короткими заданиями.

Текущий контроль

Программой предусмотрены: опрос, практические и творческие задания, проект.

Требования к выполнению практических работ

Присутствие на практическом занятии и выполнение практической работы во время занятия оценивается, как зачтено

Требования к выполнению проекта

Проект выполняется индивидуально. Проект подразумевает под собой выполнение задания и презентацию результата в аудитории.

4. Методическое обеспечение программы

обучения, используемые в программе: словесные Методы объяснение материала), наглядные (презентация), практические (дети решают конструкторские задачи), аналитические.

будут учащихся творческой активности стимулирования целью C использованы:

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- методы компьютерного моделирования;
- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала будут использоваться:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
 - дидактические пособия (карточки с заданиями, раздаточный материал).

5. Организационно-педагогические ресурсы

Специализированные лаборатории и классы, основные установки и стенды

Площадка:

Компьютерный класс, аудитории с соответствующем оборудованием для занятий 4-6, 8, 9, 11, 13.1 и 13.2.

Обычные классы с мультимедийным оборудованием для презентации материала.

Оборудование и программное обеспечение:

- Fusion 360 (устанавливается пробная версия с помощью VPN), Компас 3D;
- Cura, PrusaSlicer (последние версии);
- CorelDRAW
- EzCAD.

Аппаратное обеспечение:

ПЭВМ по количеству учащихся. Минимальные системные требования:

- Операционная система Windows 11, Linux, MacOS
- 4 ГБ оперативной памяти;
- Процессор 2.5 ГГц;
- 8 ГБ свободного дискового пространства;
- Разрешение экрана 1920*1080.

Материалы

Для 3D-печати: PLA и/или PETG.

Для тренинга: фанера, акрил (толщина до 5 мм), светодиодная лента, контроллер (если RGB лента) и блок питания.

Для практики по литью: силикон для форм, эпоксидная смола, емкости для смешивания, мерные стаканы, перчатки, защитные коврики.

Для макетирования: бумага А4, картон, ножницы, канцелярские ножи, клейкарандаш, скотч, ПВА, линейки, циркули, маркеры.

Для скетчинга: бумага (А4, белая, плотная), карандаши разной твердости, ластики, маркеры, фломастеры, цветные карандаши, линеры.

Кадровое обеспечение программы

Реализаторы программы: профессорско-педагогический состав Университета мисис.

6. Список литературы

- 1. Тарг, С. М. Краткий курс теоретической механики: учебник для вузов / С. М. Тарг. М.: Высш. Шк., 1986 416 с.
- 2. Краткое методическое пособие по AUTODESK FUSION 360/ Санкт-Петербургский политехнический университет Петра Великого, 2020. – 40 с.
- 3. Шкуро, А.Е. Технологии и материалы 3D-печати: учеб. пособие / А.Е. Шкуро, П.С. Кривоногов. Екатеринбург, 2017. 98 с.
- 4. Григорьянц, А. Г. Лазерная резка металлов: учеб. пособие / А. Г. Григорьянц, А.А. Соколов М.: Директ-Медиа, 2021.-128 с.