Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский технологический университет «МИСИС»

УТВЕРЖДАЮ

И.о. проректора по образованию

Ю.И. Ришко

«<u>18</u>» <u>Октября</u> 2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

Основы предметного и промышленного дизайна

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: базовый Возраст обучающихся 12 - 18 лет

Срок реализации: 36 академических часа

Составитель (разработчик): Старший преподаватель кафедры МЦМ НИТУ МИСИС Тавитов А.Г

1 Пояснительная записка

1.1 Характеристика образовательной программы

Дополнительная общеобразовательная (общеразвивающая) программа дополнительного образования детей и взрослых, реализуемая Федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский технологический университет «МИСИС» (далее - НИТУ МИСИС, Университет МИСИС, Университет) «Технологии и материалы цифрового производства» разработана на основе и в соответствии с нормативно-правовыми документами:

- Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об

образовании в Российской Федерации» (с изм. на 17.02.2023 г.). (далее -273-Ф3).

- Концепция развития дополнительного образования детей до 2030 года (с изм. на 15.05.2023 г.) (утверждена распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р).

деятельности образовательной осуществления - Порядок организации (утвержден приказом Министерства общеобразовательным программам дополнительным

просвещения Российской Федерации от 27 июля 2022 г. № 629) (далее – Приказ № 629).

- Целевая модель развития региональных систем дополнительного образования детей (утверждена приказом Министерства просвещения Российской Федерации от 3 сентября 2019 г. № 467) (с изм. на 21.04.2023).

- Приказ Министерства Просвещения Российской Федерации от 30.09.2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства

Просвещения Российской Федерации от 9 ноября 2018 г. № 196».

- Приказ Министерства Просвещения Российской Федерации от 09.11.2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».

- Постановление Главного государственного санитарного врача Российской Федерации от 28 сентября 2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарноэпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления

детей и молодёжи».

- Постановление Главного государственного санитарного врача Российской Федерации от 28 января 2021 г. № 2 СанПиН 1.2.3685-21 «Санитарные нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» (раздел VI «Гигиенические нормативы по устройству, содержанию и режиму работы организаций воспитания и обучения отдыха и оздоровления детей и молодежи»).

- Письмо Министерства образования и науки РФ от 18.11.2015 г. № 09-3242 «О направлении информации» (вместе с «Методическими рекомендациями по проектированию

дополнительных общеразвивающих программ (включая разноуровневые программы)».

- Приказ Департамента образования города Москвы от 17.12.2014 г. № 922 «О мерах по развитию дополнительного образования детей» (с изм. на 24.10.2022).

- Приказ Департамента образования и науки города Москвы от 3.04.2023 г. № 271 «О внесении изменений в приказ Департамента образования и науки города Москвы от 17 декабря 2014 года № 922».

- Методические рекомендации по реализации дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий: приложение к письму Министерства просвещения Российской Федерации от 31 января 2022 г. №ДГ-245/06.
 - Локальные нормативные акты по образовательной деятельности Университета.

Направленность программы – техническая.

Уровень освоения – базовый.

Цель программы — профориентация обучающихся и развитие мотивации к техническому творчеству, развитие познавательной активности детей через обучение основам дизайна и технологий персонального цифрового производства, а также содействие наблюдательности в познании мира как важного качества современного ученого и инженера.

Актуальность программы

Бурное развитие науки и техники в последние десятилетия открывает доступ к новым материалам и технологиям обработки материалов. Использование новых материалов и технологий приводит к повышению функциональности, долговечности и эстетических характеристик производимых изделий. Для реализации высвобожденного потенциала современная экономика нуждается в специалистах, обладающих знаниями и умениями на стыке различных областей, способных одинаково хорошо понимать свойства материалов и эргономические требования к финальной продукции. Промышленный дизайн — это область на стыке творчества и инженерии, направленная на создание функциональных, эстетичных и удобных продуктов, используемых людьми ежедневно. При этом проектный и междисциплинарных подход к обучению играет ключевую роль в подготовке молодых специалистов, готовых создавать современные, качественные и технологичные продукты, удовлетворяющие потребности общества и государства.

Педагогическая целесообразность

Основная концепция предлагаемого курса заключается в развитии у обучающихся инженерных и научно-исследовательских навыков посредством наблюдений, исследований и экспериментов. Этот процесс позволит обучающимся приобрести полезные знания и компетенции, необходимые для осознанного выбора направления профессиональной деятельности.

1.2 Цель и задачи

Цель — пробудить интерес обучающегося к получению новых знаний в области промышленного и предметного дизайна и ознакомить с современными технологическими возможностями для воплощения самых смелых идей.

Задачи

Обучающие:

- научить основам эскизирования различных объектов;
- научить определять задачи и функционал изделий;
- научить основам компьютерного моделирования различных объектов в 2D системах;
- научить самостоятельно решать технические задачи в процессе конструирования моделей (выбор материала, планирование предстоящих действий, самоконтроль, умение применять полученные знания, приемы и опыт в конструировании других объектов и т. д.);
- научить основам компьютерного моделирования различных объектов в 3D системах на основе комбинации геометрических примитивов;
- научить основам компьютерного моделирования методами деформирования плоских эскизов;

- научить оптимизации геометрии в процессе моделирования с учетом особенностей производственных технологий;
 - научить определять требования к свойствам материала для конкретного изделия.

Развивающие:

- развить логическое мышление, пространственное воображение, творческие способности;
- развивать образное, техническое мышление и умение выразить свой замысел в проекте;
- развить познавательные, интеллектуальные и творческие способности обучающихся, в процессе создания моделей и проектов, умение работать в небольших группах, этику общения;
 - развить умение довести решение задачи до работающей модели;
- развить смекалку, находчивость, изобретательность и устойчивый интерес к поисковой творческой деятельности;
- развить умение излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- развить умение работать над проектом в команде, эффективно распределять обязанности.

Воспитательные:

- воспитать бережное отношение к ресурсам и окружающей среде;
- воспитать чувство товарищества, чувство личной ответственности;
- воспитать нравственные качества по отношению к окружающим (доброжелательность, чувство товарищества, ответственность).
- воспитать уважение к интеллектуальной собственности, культуру правомочных заимствований и неприятие плагиата.

сокращение объемов программы является особенностью Отличительной теоретического материала и одновременного увеличения интерактивных практических задач. Такой подход обеспечивает высокий уровень мотивации обучающихся и эффективную организацию учебного процесса.

Возраст: 12 - 18 лет.

Сроки реализации: 1 год. Общее количество учебных часов, запланированных на весь период обучения – 36.

Формы и режим занятий

Формы проведения занятий: лекции, практические занятия, мастер-классы. Формы организации деятельности: групповые и индивидуально-групповые. Наполняемость группы: до 25 человек.

Время обучения – 2-6 часов в неделю. При сохранении общего количества часов программы могут быть реализованы в более короткий срок за счет занятости школьников в каникулярный период и выходные и праздничные дни. Предусмотрен перерыв продолжительностью 15 минут в конце каждого учебного занятия.

Ожидаемые результаты

В результате освоения программы обучающиеся будут знать:

- ключевые механические свойства материалов и методы их оценки;
- метод трехмерного проектирования NURBS;
- метод трехмерного проектирования SubD;
- проектирование и дизайн для 3D печати и лазерной резки;
- макетирование и прототипирование изделий с заданными характеристиками;
- основные и продвинуты;
- методы работы с mesh-поверхностями.

будут уметь:

- составлять эскизы изделий;
- подбирать технологию проектирования изделий;
- готовить трехмерные компьютерные модели объектов для изготовления с использованием выбранных производственных технологий;
 - использовать ручной инструмент для макетирования;
 - подбирать материалы с нужными для изделия свойствами;
 - планировать и распределять работу над общим проектом между членами команды;
 - справляться с индивидуальными заданиями, составляющими часть общей задачи.

2 Содержание программы

2.1 Учебно-тематический план

Программа состоит из четырех разделов, каждый из которых включает в себя лекции, практические занятия и самостоятельную работу.

Таблица 1 - Учебно-методический план

	Раздел / Тема	Аудиторные учебные занятия			Вне- ауд. работа	Формы аттестации (контроля)
№ п/п		Всего ауд. часов	Лек ци и	Практические занятия	Сам. работа	
1	Блок 1. Введение в промышленный и предметный дизайн	10	3	7		Опрос, практическая работа
1.1	Эскизирование	5	2	5	2	
1.2	Макетирование	5	1	5		
2	Блок 2. Проектирование и прототипирование с использованием инструментов цифрового производства	10	2	6	3	Опрос, практическая работа

2.1	Технологии цифрового					
	производства и 2D	4	1	3	1	
	проектирование					
2.2	Технологии цифрового	5	1	4		
	производства и 3D				2	
	проектирование					
2.3	Экскурсия в лабораторию	1		1		
2.0	цифрового производства	1				
3	Блок 3.					Опрос,
	Введение в	8	2	6		практическая
	материаловедение					работа
3.1	Мир материалов	11	1			3
3.2	Механические свойства	4		4		
	материалов	-1				
3.3	Материалы для цифрового	2	1	2		
	производства	4				П
4	Блок 4.	8		8	3	Презентация
-	Проектная деятельность					проекта
4.1	Работа над проектом	8		8	3	TI
1.1						Итоговая
						аттестация
			-			проводится на
						основании
	Итоговая аттестация					совокупности
	HIOTOBAN ATTOCKA	(8)				выполненных
						промежуточных
						практических
					B 1	работ
	I .		7	15	14	1

2.2 Рабочая программа

Блок 1. Введение в промышленный и предметный дизайн

2.1 Эскизирование.

- Лекция: Современный промышленный и предметный дизайн.
- Практическое занятие: Понятие перспективы. Практика использования карандаша и маркера.
- Самостоятельная работа: Эскизы оправы солнцезащитных очков.

2.2 Макетирование.

- Лекция: Методы и инструменты макетирования.
- Практическое занятие: Изучение методов соединения деталей макета. Разрез и изгиб макета.
- Самостоятельная работа: Разработка макета оправы солнцезащитных очков.

Блок 2. Проектирование и прототипирование с использованием инструментов цифрового производства

- 2.1 Технологии цифрового производства и 2D проектирование
- Лекция: Субтрактивные производственные методы.
- Практическое занятие: построение NURBS-кривых в плоскости с помощью Rhino3D. Экспорт векторных файлов для лазерной резки.
 - Самостоятельная работа: построение контура оправы из NURBS-кривых.
 - 2.2 Технологии цифрового производства и 3D проектирование
 - Лекция: Аддитивные производственные методы.
- Практическое занятие: Построение объемных тел с помощью NURBS. Построение объемных тел с помощью SubD. Работа с Mesh. Экспорт объемных моделей для 3D печати.
- Самостоятельная работа: построение объемной модели оправы солнцезащитных очков.

Блок 3. Введение в материаловедение

3.1 Мир материалов

Лекция: Мир материалов.

Практическое занятие: Основные

механические свойства материалов. Оценка свойств материалов.

3.2 Механические свойства материалов

Лекция: Механические свойства материалов и

методы их оценки.

Практическое занятие: изготовление

брусков из композиционного материала. Испытания прочности брусков на изгиб и ударную вязкость.

3.3 Материалы для цифрового производства

Лекция: Выбор материалов. Диаграммы

Эшби. Методы изготовления оправы.

Практическое занятие: Практика подбора

материала для оправы солнцезащитных очков.

Блок 4. Проектная деятельность

4.1 Разработка оправы для солнцезащитных очков

Практическое занятие: Формирование проектных команд, выбор концепции оправы, исследование аналогов. Определение цели проекта, задач. Выбор материалов и методов производства.

Самостоятельная работа: Работа над оправой солнцезащитных очков. Создание

презентации защиты своего проекта. Репетиция защиты проекта.

3 Формы аттестации и оценочные материалы

3.1 Формы контроля

Реализация программы «Основы предметного и промышленного дизайна» базового уровня предусматривает текущий контроль, промежуточную и итоговую аттестацию обучающихся.

Текущий контроль проводится проверка знаний в форме короткого опроса, позволяющего выявить усвоение материала обучающимися. Вопросы, которые возникают у обучающихся в процессе обучения, выносятся на общее обсуждение также в диалоговой форме разбора материала.

Промежуточная аттестация проводится в форме защиты работы или проекта, участия в

конференциях, выставках, фестивалях.

Итоговая аттестация проводится в форме защиты учебно-исследовательской или творческой

работы и проекта.

Основным механизмом выявления результатов воспитания является педагогическое наблюдение. Публичная презентация образовательных результатов программы осуществляется в форме презентации проекта или выставки.

3.2 Средства контроля

Контроль освоения обучающимися программы осуществляется путем оценивания параметров, описанных в Таблице 2.

Таблица 2 - Критерии оценивания освоения программы обучающимися

Критерии	Уровни определения результатов					
оценки	Минимальный уровень	Общий уровень	Продвинутый уровень			
Усвоение учебного материала	Обучающийся может пройти короткий опрос каждого раздела программы	Обучающийся может пройти короткий опрос каждого раздела программы и ответить на дополнительные вопросы	Обучающийся может пройти короткий опрос каждого раздела программы, ответить на дополнительные вопросы, вносит предложения вопросов для обсуждения			
Рабочие результаты	Обучающийся показывает знание материала, учебный проект не выполнен.	1 -	Выполнено два или больше проектов в рамках программы.			

3.3 Итоговая аттестация

Итоговая аттестация проводится на основании совокупности результатов проведенных опросов и выполненного проекта.

4 Методическое обеспечение программы

Методы обучения, используемые в программе: словесные (устное объяснение материала), наглядные (презентация), практические (дети решают инженерные задачи), аналитические.

- метод проектов;
- метод погружения;
- методы сбора и обработки данных;
- игровые методики;
- исследовательский и проблемный методы;
- анализ справочных и литературных источников;
- поисковый эксперимент; опытная работа;
- обобщение результатов.

Для обеспечения наглядности и доступности изучаемого материала используются:

- наглядные пособия смешанного типа (слайды, видеозаписи, кинематические схемы);
- дидактические пособия (карточки с заданиями, рабочие тетради с практическими заданиями, раздаточный материал);
- информационные материалы и технологические карты (инструкции, памятки). Программа может быть реализована с применением электронного обучения и дистанционных образовательных технологий с использованием систем дистанционного обучения.

5 Организационно-педагогические ресурсы

5.1 Специализированные лаборатории и классы, основные установки и стенды

Занятия проводятся в специализированных аудиториях со всем необходимым для реализации проектов оборудованием:

- компьютерный класс (К-112);
- лаборатория 3D печати (K-018).

5.2 Оборудование и программное обеспечение

Программа реализуется с использованием специализированного программного обеспечения для трехмерного проектирования:

- операционная система Windows 10;
- Компас 3D;
- Rhino 3D;
- Orca

Slicer

И

PRUSA

Slicer.

5.3 Аппаратное обеспечение

Программа реализуется на оборудовании ЦТПО (Центр технологической поддержки образования) «Лаборатории цифрового производства Фаблаб» (СКБ «РеИнж» НИТУ «МИСИС»):

- станок лазерной резки и гравировки GCC Laser Pro;
- станок лазерной резки и гравировки Trotec;
- 3D принтер FFF Flashforge Adventurer M5;
- ручной инструмент и электроинструмент.

5.4 Материалы и инструменты

Материалы и инструменты, используемые в ходе проведения практических занятий и самостоятельной работы:

- филамент PLA для 3D печати FFF (13 катушек по 750 г);
- филамент PETG для 3D печати FFF (25 катушек по 750 г);
- филамент TPU для 3D печати FFF (5 катушек по 750 г);
- фанера 3мм для лазерной резки (3 листов 1500х1500мм);
- фанера 6мм для лазерной резки (2 листа 1500х1500мм);
- оргстекло 3 мм для лазерной резки (2 листа 2000х1800мм);
- стержни для клеевого пистолета (100 шт.);
- картон листовой, 2 мм, 700х1000 (50 шт.);
- картон листовой, 0.9 мм, 700х1000 (50 шт.);
- ватман А1 (30 шт.);
- набор графитовых карандашей 6Н-8В (100 шт.);
- набор линеров 0.05-0.8 (100 шт.);
- канцелярский нож (25 шт.);
- лист А4 (1000 шт.);
- скотч малярный (20 шт.);
- набор мастихинов (10 уп.);
- шпатлевка для моделирования 330 мл (25 шт.);
- силикон формовочный на основе платины, твердость по Шору 10, 1 л (25 шт.);
- маркеры для скетчинга, набор из 6 цветов (30 уп.);
- клей ПВА, 1 кг (10 шт.),
- клей ПВА для дерева, 1 кг (10 шт.)
- очки защитные (25 шт.)
- перчатки защитные (5 уп. по 50 шт.).

5.5 Кадровое обеспечение программы

Программа реализуется квалифицированными научно-педагогическими кадрами системы высшего профессионального образования, имеющим профессиональное образование в области, соответствующей профилю программы, и постоянно повышающим уровень профессионального мастерства. Для обеспечения образовательного процесса необходимо привлечение следующих специалистов:

- преподаватель;
- ассистент преподавателя;
- инструктор.

6 Интернет-ресурсы

Список интернет-ресурсов

1. Rutube-канал «Цифровая фабрика». - URL: https://rutube.ru/u/digitalfab/ (дата обращения 05.02.2025).