Эффективный промышленный катализатор для производства биотоплива, позволяющий получать его быстрее и при низких температурах, был синтезирован международным научным коллективом с участием ученых Университета МИСИС. Результаты работы опубликованы в международном научном журнале Asian Journal of Chemistry.
Темпы роста экологических проблем и одновременный мировой энергетический кризис мотивируют ученых по всему миру активнее искать альтернативные способы получения энергии. Биодизель является отличным примером альтернативной возобновляемой энергетики. Это жидкое моторное биотопливо, которое может помочь компенсировать растущий спрос на «зеленые» энергоносители.
Биодизель имеет ряд преимуществ перед углеводородным топливом: он более безопасен, нетоксичен, биоразлагаем и содержит минимальное количество серы и ее соединений. Биодизель более насыщен кислородом, чем обычное минеральное дизельное топливо, и сгорает в двигателе более эффективно, таким образом, приводит к меньшему выбросу углеводородов, CO2 и токсичных примесей. Присутствие кислорода также увеличивает смазывающую способность топлива, что продлевает срок службы двигателя. Кроме того, биодизель имеет более высокое цетановое число и температуру вспышки.
Биодизель представляет из себя смесь эфиров жирных кислот, источником которых могут служить различные растительные масла или животные жиры. В США и Европе биодизель производят из съедобных масел — подсолнечного или соевого масло, тогда как в Индии используют непищевые масла таких растений, как ятрофа и каранджиа. Получают биодизель реакцией этерификации одноатомными спиртами — метанолом, этанолом и др.
Ключевую роль в производстве биодизеля на промышленном уровне играет так называемый гетерогенный катализатор. В ходе химической реакции растительное масло или другой источник триглицеридов в присутствии катализатора вступает в реакцию с одноатомными спиртами, образуя в финале биодизель и глицерин.
В представленной научной работе ученые впервые использовали в качестве катализатора волластонит — минерал из класса силикатов, природный силикат кальция.
«Волластонит был синтезирован методом автосжигания, при этом
L-аланин использовался в качестве топлива для сжигания. Для оценки каталитической способности полученного волластонита была проведена реакция переэтерификации соевого масла метанолом. После реакции биодизель, глицерин и катализатор разделяли центрифугированием. Чтобы оптимизировать процент катализатора, используемого в производстве биодизеля, нами был проведен ряд опытов с различных количеством катализатора. В итоге мы сделали вывод, что оксид щелочного металла и кремнезем в составе волластонита помог в производстве биодизеля (82,6%) за меньшее время и при более низкой температуре», — рассказал один из авторов исследования, научный сотрудник Университета МИСИС Раджан Чоудхари.
В настоящее время научный коллектив продолжает оптимизацию полученного катализатора под промышленный формат использования.