Научно-исследовательская деятельность кафедры направлена на решение как фундаментальных проблем физической химии и материаловедения, так и практических задач, связанных с разработкой, описанием и оптимизацией процессов получения новых материалов и технологических процессов, основанных на химических и фазовых превращениях в веществах.
Основные направления научных работ кафедры:
- Взаимодействие СВЧ электромагнитного излучения с веществом;
- Сцинтилляционные наноструктурные материалы;
- Компьютерное моделирование некристаллических веществ и наносистем;
- Термодинамика и кинетика процессов на поверхностях раздела фаз и границах зерен: адсорбция, диффузия, рост фаз, жидкометаллическое проникновение;
- Применение и развитие методов термодинамического моделирования для решения задач ресурсосбережения и экологии в металлургии;
- Теоретический анализ и численное моделирование систем пониженной размерности: отдельных и связанных квантовых точек и квантовых ям;
- Разработка методов получения и исследование свойств наноструктурных тонких оксидных пленок и материалов на их основе;
- Разработка методов получения наноразмерных частиц химическими и биохимическими методами;
- Использование газовой хроматографии для изучения, контроля и управления металлургическими процессами.
Основные результаты:
- Экспериментально изучен и теоретически обоснован механизм взаимодействия аморфного ферромагнитного микропровода с СВЧ излучением. Показана общность механизмов для микропроводов различного химического состава и формы и предложения волноводная методика определения характеристик микропровода, для эффективного выбора материала для сенсоров и защитных покрытий.
- Разработана схема получения наноструктурных сцинтилляционных материалов с ультрамалым временем высвечивания (~3 нс) из нелегированных галогенидов щелочных металлов, путем их механической обработки.
- Определены параметры зернограничной диффузии меди в алюминии, показаны существенное различие в диффузионным характеристиках меди в алюминии по сравнению с другими элементами.
- Разработана методика определения пористости в монокристаллических никелевых жаропрочных сплавах с помощью измерения плотности (метод взвешивания).
- Развита модель возникновения и роста гомогенизационных пор в МНЖС, на основе эффекта Френкеля. Проведено сравнение с экспериментальными данными.
- Развита модель аннигиляции пор в процессе горячего изостатического прессования. Предложена программа обработки ГИП в сочетании с механическими испытаниями МНЖС.
- Усовершенствована установка для определения поверхностного натяжения твердых тел на основе метода нуль-ползучести и получены изотермы поверхностного натяжения для сплавов на основе меди (легирующие In, Sb, Sn, Bi).
- Разработана новая методика анализа данных по ударному сжатию металлов. Методика включает определение параметров потенциала модели погруженного атома и построение моделей металла методом молекулярной динамики. В результате удается строить адекватные модели металла при температурах до десятков тысяч кельвин и давлениях в сотни ГПа и рассчитывать термическое и калорическое уравнения состояния в состояниях вплоть до экстремальных. Соответствующие расчеты проведены для цезия, железа, растворов железо-сера, свинца, меди, натрия. Результаты опубликованы.
- Продолжено исследование кластерного механизма кристаллизации, работающего при сильном переохлаждении. Методом молекулярной динамики исследована кристаллизация никеля и серебра. Показано, что существует нижняя граница переохлаждения жидкости, составляющая примерно 0.60 от температуры плавления. Результаты опубликованы.
- Проведены молекулярно-динамические исследования свойств нанокластеров серебра различного размера и структуры (кубооктаэдрических, икосаэдрических) при их нагревании и охлаждении, изучены их термодинамические свойства, а также кинетика превращения кубооктаэдрической формы в икосаэдрическую. Результаты опубликованы.
- Исследовано влияние магнитного поля на спектры и законы дисперсии в связанных квантовых точках и квантовых ямах и на экситонные поляритоны в связанных квантовых ямах и квантовых точках в оптическом микрорезонаторе, а также исследованы апериодические последовательности квантовых точек в магнитном поле.
- Определены энергетические спектры, волновые функции и законы дисперсии пространственно-разделенного квазидвумерного и трехмерного экситона с носителями в связанных квантовых ямах. Проанализирована их зависимость от магнитного поля в широком диапазоне.
- Рассмотрено взаимодействие двумерных и квазидвумерных экситонов с фотонами и возможное образование экситонных поляритонов для структур с одиночными и двойными квантовыми ямами, встроенными в микрорезонатор. Рассмотрен переход Костерлица-Таулеса в когерентное состояние для системы взаимодействующих экситонных поляритонов в оптической микрополости.
- Отработаны основные технологические приемы и подобраны режимы для получения самоочищающихся покрытий на различные материалы.
- Разработана методика получения наночастиц благородных металлов на поверхности наноразмерных частиц SiO2 путем химического осаждения из растворов.